

Programa Académico: Químico Farmacéutico Biólogo	Plan de estudios: 2021
Unidad didáctica: : Química Orgánica III	Semestre: cuarto.
Créditos: 4	Responsables de la UDI: Dr. Gerardo Martínez Guajardo, Dr. Hiram Hernández, Dr. Guillermo Quiñones Reyes.
Horas /semana: Teoría 4 horas	Modalidad: Inicia no presencial.
Etapa de formación: Tronco común	Eje curricular: Química
UDI's precedentes: Química General, Química Orgánica I, Química Orgánica II.	UDI's subsecuentes, Química Medicinal I, II y III

COMPETENCIA DE LA UDI	Comprender, analizar y aplicar los fundamentos de la Síntesis Orgánica e integrar las metodologías de la síntesis de compuestos orgánicos, partiendo de los reactivos precursores que garanticen las rutas más convenientes de síntesis. De igual forma, entender y aplicar los conocimientos obtenidos de la Química Heterocíclica, tales como estructura, nomenclatura, reactividad y metodología de obtención. Esto debido a la importancia y estrecha relación con diversas disciplinas tales como la Farmacología, la Bioquímica, y algunas otras como la ciencia de los nuevos materiales.
CONTRIBUCIÓN DE LA UDI AL PERFIL DE	Se contará con los conocimientos necesarios para escalar hacia la aplicación en la industria, en la investigación, en la
EGRESO	docencia. Se tendrá la capacidad de diseñar y proponer
	rutas convenientes de síntesis de fármacos.
Saberes actitudinales	Disciplina, honestidad, respeto, colaboración, análisis, reflexión.

COMPETENCIA 1

Comprender integrar y aplicar las metodologías de la Síntesis Orgánica, en la síntesis de compuestos de interés, tales como fármacos y algunos materiales diversos, partiendo de los reactivos precursores más convenientes en la búsqueda de las rutas más convenientes de síntesis.

SUB COMPETENCIAS

- 1. Antecedentes, Historia,
- 2. Importancia de la Síntesis Orgánica
- 3. Metodologías. Estrategias de Síntesis Orgánica.
 - a. Desconexiones.
 - b. Los sintones.
 - c. Análisis.
 - d. Síntesis.
- 4. Síntesis selectas. .Ejemplos clásicos de Síntesis Orgánica

COMPETENCIA 2

revisar y aplicar las diferentes formas de nombrar a los compuestos heterocíclicos, mediante el uso de material bibliográfico y recursos electrónicos.			
	Introducción. a. Definición. b. Importancia. c. Generalidades		
SUB COMPETENCIAS	 Nomenclatura de los compuestos heterocíclicos. Sistema común. Sistema por sustitución. Sistema Widman-Hantzch (W-H). 		

COMPETENCIA 3

Comprender, analizar y aplicar los principales métodos para la preparación de anillos heterocíclicos de hasta seis miembros no aromáticos (no clásicos), mediante el uso de material bibliográfico y recursos electrónicos.

SUB COMPETENCIAS

- 1. Anillos de tres átomos.
 - a. A partir de halohidrinas.
 - b. A partir de halotioles (halomercaptanos).
 - c. Por oxidación metálica de alquenos.
 - d. Por peroxidación de alguenos.
 - e. A partir de diazometano.
- 2. Anillos de cuatro átomos.
 - a. A partir de β-amino cloruros de ácido.
 - b. A partir de β-amino anhídridos de ácido.
 - c. A partir de β-halopropionatos de sodio.
 - d. A partir de β-bromoamidas.
 - e. A partir de cetenas.
 - f. Por fotólisis de acetona.
 - q. Por fotólisis de tionas.
- 3. Anillos de cinco átomos.
 - a. A partir de γ-amino cloruros de ácido.
 - b. A partir de y-amino anhídridos de ácido.
 - c. De 1,4-dibromo derivados de alquilo.
 - d. De cloruros de succinilo.
 - e. A partir de ácidos γ-hidroxicarboxílicos.
 - f. A partir de ácidos γ-hidroxitiocarboxílicos.
- 4. Anillos de seis átomos.
 - a. A partir de 1,5-dibromoderivados de alquilo.
 - b. A partir de cloruro de glutarilo.
 - c. A partir de dianhídridos de ácido.
 - d. A partir dr cloruro de valerianilo.

COMPETENCIA 5

Comprender, analizar y aplicar los principales métodos para la preparación de anillos heterocíclicos aromáticos (clásicos), mediante el uso de material bibliográfico y recursos electrónicos.

SUB COMPETENCIAS

1. Pirrol.

- a. Síntesis de Paal- Knorr
- b. Síntesis de Hinsberg.
- c. Síntesis de Hantzch.
- d. Síntesis de Knorr.

2. Furano.

- a. Síntesis de Paal-Knorr.
- b. Síntesis de Hinsberg.
- c. Síntesis de Feist-Benary
- d. A partir de cetonas α,β-insaturadas
- e. A partir de aldehidos 2,3,4,5-tetraoxhidrilados (xilosa).

3. Tiofeno.

- a. A partir de hidrocarburos (método industrial).
- b. Síntesis de hinsberg.
- c. De compuestos 1,4-dicarbonílicos.
- d. De cetotionas aromáticas.
- e. De clorocetonas α,β -insaturadas.
- f. De α -mercaptocetonas con cianoamidas.

4.- Piridina.

- a. De compuestos 1,5-dicarbonílicos insaturados.
- b. De compuestos 1,5-dicarbonílicos saturados.
- c. Síntesis de Hantzsch.

COMPETENCIA 6

Comprender, analizar y aplicar el conocimiento de la estructura y propiedades químicas (reacciones), de los compuestos heterocíclicos aromáticos más importantes, mediante el uso de material bibliográfico y recursos electrónicos.

SUB COMPETENCIAS

1.Piridina.

- a. Estructura, aromaticidad.
- b. Reactividad en el nitrógeno.
 - i. Basicidad. Formación de sales de piridinio.
 - ii. Nitración.
 - ii. Suffonación.
 - iii. Alquilación.
- c. Dimerización.
- d. Reacción con alquinos.
- e. Reacciones de sustitución electrofílica aromática.
- 2. Pirrol.
 - a. Estructura, aromaticidad.
 - b. Reacciones de Sustitución Electrofílica.
 - i. Halogenación.
 - ii. Nitración.
 - iii. Acilación.
 - iv. Sulfonación.
 - c. Condensación con acetona.
 - d. Reacción con carbenos.
- 3. Furano.
 - a. Estructura, aromaticidad.
 - b. Reacciones de Sustitución Electrofílica.
 - i. Nitración.
 - ii. Sulfonación.
 - iii. Halogenación.
 - iv. Alquilación.
 - v. Hidroxialquilación.
 - c. Condensación con acetona.
 - d. Reacciones de Diels-Alder.
- 4. Tiofeno.
 - a. Estructura, aromaticidad.
 - b. Reacciones de Sustitución Electrofílica.
 - i. Nitración.
 - ii. Formilación.
 - iii. Sulfonación.

iv. Acilación. v. Halogenación.

UNIVERSIDAD AUTÓNOMA DE ZACATECAS "Francisco García Salinas" Área de Ciencias de la Salud Unidad Académica de Ciencias Químicas Programa de Químico Farmacéutico Biólogo

	Revisión y análisis de los temas.
ESTRATEGIAS DE ENSEÑANZA Y APRENDIZAJE	Talleres de ejercicios, nomenclatura complementaria, mecanismos de reacción, reacciones recientemente reportadas.
	Revisión de algunas páginas de la red con contenido de interés para los temas incluidos en la UDI.
	Discusión sobre algunos temas relacionados con la práctica y conveniencia de la Química Verde.

	Pintarrón, proyector, pantalla, bibliografía.
REQUERIMIENTOS DIDÁCTICOS Y ESCENARIOS	Herramientas digitales: internet, plataformas de interacción meet, zoom, classroom, etc.
	Acceso a algunas revistas con artículos de la Química Orgánica con especialidad en Síntesis Orgánica y Química Heterocíclica.

Evaluación

TEORÍA	
EXÁMENES	60 %
TAREAS	20 %
PARTICIPACIÓN y/o PORTAFOLIO	20 %

Bibliografía.

1. Heterocyclic Chemistry. 5th Ed.

John A. Joule, Keith Mills.

John Wiley & Sons. 2010.

2. Fundamentals of Heterocyclic Chemistry.

Louis D. Quin, John A. Tyrell.

John Wiley & Sons. 2010.

3. The Chemistry of Heterocycles. 3th Ed.

Theophil Eicher, Sigfried Hauptmann, Andreas Speecher.

Wiley-VCH. 2012.

4. Organic Synthesis. Strategy and control.

Paul Wyatt, Stuart Warren.

John Wiley & Sons. 2007.

5. Workbook for Organic Synthesis. The disconnetion Approach. 2th Ed.

Stuart Warren, Paul Wyatt.

John Wiley & Sons. 2009.

6. Introduction to strategies for Organic Synthesis. 2th Ed.

Laurie S. Starkey.

John Wiley & Sons. 2018.